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Synopsis 

Die geometrical effect on Newtonian annular jet swelling was studied using a finite element 
method. Numerical result shows what we expected in the limiting cases of die swelling with 
annular die geometries, i.e., variation of the die gap for straight dies follows the limiting behavior 
of capillary and planar die swellings. Also the effect of upstream die geometry was investigated. 
The result shows that final extrudate dimensions are generally influenced by its previous history 
in the die, i.e., not only by shearing action but also by elongational effect caused by narrowing die 
gap. 

INTRODUCTION 

Some time ago, a finite element method was used (Sed) for the analysis of 
the annular die swelling problem, which does not accept any simple reasonable 
analytical solution due to its complicated geometry originating from two free 
surfaces, positions of which are not known a priori. This article presents a 
partial result of continuous study of annular die swelling problem. 
As is well known, the dimensions of annular jet depend on the swelling 

ratios, which are influenced by extrusion conditions, rheological properties of 
polymeric fluids, and die shape. In this article, the effect of die geometry is 
considered. 

According to Allan's computational result,2 die geometry has a significant 
effect on the numerical prediction of capillary die swelling. Dealy and his 
c o - ~ o r k e r s ~ , ~  did experimental study about the effect of annular die geometry 
on final jet swelling ratios. Since they measured relaxed jet swelling instead of 
instantaneous jet swelling for different shape dies, their result is a little 
different from the present study. However, their experimental results revealed 
that extrudate swell is strongly affected by die geometry. Winter and Fischer5 
reported computational result that processing history in annular extrusion 
dies affects the state of the polymer extrudate at the die exit. Their computa- 
tional results revealed also that the history of polymer inside the die is 
influenced by die geometry. 

For an annular jet, due to the absence of an axis of symmetry in the fluid, 
we must consider the entire flow field bounded by the two surfaces of the 
annular channel. So we can take into considerations of die gap by controlling 
the radius of inner die wall (represented as dimensionless constant k ) .  The 
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other study is related to the fact that we can change the fluid history by 
varying die channel geometry, i.e., by changing its angle (to make a converging 
or diverging die) and gap width. This makes the fluid experience not only a 
shearing but also an elongation. 

MATHEMATICAL FORMULATION AND A FINITE 
ELEMENT SCHEME 

The mathematical description of the steady fluid motion is assumed to be 
given by the following equations: 

v v = O (continuity equation) (1) 

pv vv = pf + diva = - vp + pf + v r (momentum equation) (2) 

Here the fluid was assumed to be incompressible and a Newtonian fluid. In 
these equations, v represents the fluid velocity vector, p the density, f the 
body force vector per unit mass, r deviatoric stress tensor, u total stress 
tensor (= -PI + r ) ,  and p pressure. For the constitutive equation Newto- 
nian fluid was used as mentioned. Then 

r = 2vD (3) 

where D is the rate of strain tensor and q is the Newtonian viscosity. The 
transport of thermal energy in the fluid is described by 

pCPv V T  = S + v (k . vT)  + 7:D (energy equation) (4) 

where Cp is the specific heat, S is the volumetric heat source, k is the thermal 
conductivity tensor. With the suitable boundary conditions, these four equa- 
tions form the basis of the finite element method used in this study. Using the 
variational statement for these equations implicitly included in conjunction 
with a finite elemept interpolation for the independent variables v, p, and T 
yields the standard finite element equations. Since the finite element scheme 
used in this study has been fully described elsewhere,' we don't repeat the 
lengthy and complicated derivation and only mention briefly the main fea- 
tures of this scheme. Basi'cally the finite element method code used here is 
designed for steady state, incompressible, 2-dimensional (plane or axisymmet- 
ric without torsion) fluid problems. It is based on the Galerkin descritization 
procedure, solving simultaneously eqs. (1)-(4) to their full nonlinear forms. To 
solve nonlinear terms, iteration was done until convergence occurs using the 
Newton-Raphson iteration method or the successive substitution method.' In 
this study, we will investigate the annular die swelling of an isothermal 
Newtonian annular jet extruded from different die geometries, and so the 
energy equation (4) will not be used. The computer program has been amply 
tested for correct simulations. 
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Fig. 1. Description of the free surface problem. 

FREE SURFACE ITERATIONS AND A 
PROBLEM DESCRIPTION 

In a free surface problem, such as die swelling problem, an additional source 
of nonlinearity is present since the location of the free surface is not known 
a priori. Consider the fluid emerging from a die into the atmosphere as shown 
in Figure 1. If the shear stress due to the surrounding air can be ignored, the 
free surface condition is equivalent to setting the shear stress to zero and the 
normal stress to the ambient pressure (generally taken as zero). Also in this 
class of problems, in addition to the nonlinearity due to the unknown free 
surface location, a singularity is present since the fluid velocity changes from 
zero (no-slip condition on the wall before emerging from the die) to a non-zero 
value (the no-shear condition after exiting from the die) in an infinitesimal 
distance. This is also the situation in what is called a stick-slip problem, 
except the free surface condition. 

The shape of the free surface is calculated by means of an iterative 
procedure. Let us consider the case of an annular die in Figure 1 with two free 
surfaces S,  and S, described by the equations 

r1 = F,(z),  r2 = F,(z),  zo I z I Z,  ( 5 )  

Since the free surface is also a stream surface, we must have 

d F ( 4  24 
-- - - [ Z , F , ( Z ) ] ,  F , ( Z o )  = r;, i = 1,2  dz U 

where u and u are the radial and axial velocities, respectively, and r; are the 
fixed radius positions at the exit. The iterative procedure starts from cylindri- 
cal surfaces on which vanishing contact forces are imposed; new surfaces are 
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Fig. 2(a). Annular die swelling problem sketch. 

defined by the equations 

,cn+ 1 U 
dz (2) = - - [ z ,F ,” ( z ) ] ,  r + l ( z o )  = ri, 

Here Fin means nth iterated free surfaces. So 

i = 1,2 (7) 

i = 1 , 2  (8) 

These are integrated by means of Simpson’s rule, and generally five or six 
iterations were enough to produce converged free surface positions, but 
sometimes it needs more iterations. The problem sketch is shown in Figure 
2(a), and its grid is shown in Figure 2(b) for a straight die of t(! = 0.5. The 
upstream and downstream length of the die gap were taken eight times to get 
converged shapes and exclude die exit disturbances. Through this study, nine 
node Lagrangian elements were used. 

THE EFFECT OF DIE GAP WIDTH VARIATION 

The basic qualitative aspects of the annular jet swelling problem are quite 
similar to those for the capillary or planar die swelling problems. However, as 
mentioned before, a major difference is the absence of an axis or plane of 
symmetry and this necessitates a consideration of the entire flow field bounded 
by the two surfaces of the annular channel; in another words, we should solve 
a two-free-surface problem. 

The other thing to be mentioned is that for annular jet swelling, we can 
define three different swelling ratios, inside diameter swelling (Si), outside 
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Fig. 2(b). Finite element grid for a die swelling problem. 

diameter swelling (So), and thickness swelling (S,) as follows: 

[ REtid( z,) - RE"'( z,)] R f  
REt'"l( 2,) R: 

s. = = I - -  (9) 

Here R ,  means the inside radius, Rout the outside radius, z, is far down- 
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I 
Fig. 3. Fluid element shape changes extruded from straight annular die. 

stream, initial means the initial position before free surface iteration, and the 
final means the final position after free surface iteration. These swelling ratios 
are related to each other. If RL and Ri are dimensionless values 1 and k, 
respectively, they can be presented as follows: 

Si = 1 - (R,f/k) 

S, = [ RL - R,f]/[l - k ]  - 1 

or 

S,= [(l + So) - (1 - Si)*k]/[l - k ]  - 1 

The dimensionless variables used were R, = 1, R i  = k (= 0.5), uavg = 1, 
p = l .E-5,  and 7 = 1. 

The thickness swelling ratio of an annular jet increases or decreases accord- 
ing to  die gap. Following Whipple and Hill’s experimental result and analysis 
for capillary die ~ w e l l i n g ~ . ~  fluid elements (not finite elements) change the 
shape as sketched in Figure 3. An element, starting as a square a t  the center 
line of the channel, decelerates as it passes through the exit region. The 
once-square element ends up as a rectangle with its short side in the flow 
direction due to compression. A similar element starting at  some position 
between the center line of the fluid and the wall of the die will be sheared into 
a parallelogram by the velocity gradient as it is first accelerated and then 
decelerated to i ts  final swollen shape. During the acceleration and decelera- 
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TABLE I 
Radial and Axial Total Stress at Die Lips 

Inner lip Outer lip 

k 022 Or, 02, 

0.2 - 20.34 183.99 - 15.94 130.1 
0.3 - 23.22 191.47 - 20 174.78 
0.4 - 28.41 208.86 - 25.5 170.43 
0.5 - 33.21 215.35 - 25 179 
0.6 - 47.86 270.2 - 45.16 239.35 
0.7 - 55.09 288.02 - 53.15 268.59 
0.8 - 63.21 346.93 - 59.98 331.5 
0.9 - 135.32 588.4 - 134.41 573.8 

tion, the element shifts away from the center line. The final shape is approxi- 
mately a parallelogram with the short side aligned parallel to the flow 
direction. Near the wall, the same starting shape will be accelerated to its final 
swollen extrudate speed while experiencing a shearing force. During accelera- 
tion, the element shifts away from the center line. An element near the wall 
will have an extended nearly parallelogram final shape with the long side 
nearly parallel to the flow. (Since the maximum velocity is not exactly a t  the 
center line, the deformation of elements near the inner die wall and the outer 
die wall would be a little bit different from each other, but their shapes would 
be similar to each other.) The smaller the annular die gap, the larger the 
shearing action. As a result, deformation of the central element becomes 
larger, and it pushes other elements near to it. Hence, the radial normal stress 
a t  die exit increases with narrowing die gap. 

Table I presents radial and axial total stresses at  the inner and outer die 
lips for different dies. Since different meshes were used, these values are not 
absolutely comparable to each other, but the computational result is consis- 
tent with what we expected. Also we can conjecture from this result that the 
jet thickness swelling would increase as die gap decreases. This can be inferred 
also from the limiting cases of die gap. Capillary die can be taken as a limiting 
case when k goes to zero, and a planar die can be assumed as a limiting case 
when k goes to almost 1. By experiments and numerical analysis, it  is known 
that creeping flow for circular flow (flow from capillary die) shows almost 
12-13% swelling, and planar extrudate has 19-20% swelling (Tanner*). There- 
fore, it  is expected that ideally as k increases from 0 to 1 the thickness 
swelling increases from 12-13% to 19-20%, which corresponds to capillary and 
planar die swellings. Table I1 summarizes the computational results. This 
agrees with our expectation. As a reference, Dutta's FDM result9 is also 
presented in Table 11. However, the FDM scheme failed to work properly for 
annular dies when the ratio k lies outside of the range 0.3-0.7. When the ratio 
k was less than 0.3, FDM calculations failed to converge, and, for k larger 
than 0.7, the results do not appear to be consistent with the expected 
behavior. With present FEM code, there was not such a problem, which 
suggests that the difference in annular jet thickness swelling ratios between 
these two schemes can be attributed to error of FDM results to fit free surface 
condition. For the planar die swelling problem, Reddy and Tanner" got a 20% 
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TABLE I1 
Die Geometry Effect on Annular Jet Swelling (Die Gap Variation) 

k st Si s o  FDM' 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.96 

13.61 
13.95 
14.2 
14.58 
15.8 
16.38 
17.4 
18.6 
19.71 

- 0.3 
- 1.14 
- 2.4 
- 2.6 
- 2.612 
- 2.4 
- 1.563 
- 0.94 
- 0.47 

10.97 
10.1 
9.49 
8.6 
7.93 
6.59 
4.73 
2.71 
1.246 

14.86 
15.59 
16.47 
17.14 
17.48 
17.51 
16.48 

thickness expansion, and the result in Table I1 approaches this value when 
Iz  = 0.96. The result in Table I1 was all for small Reynolds number (Re = 

l .E  - 5). 

THE EFFECT OF UPSTREAM DIE GEOMETRY 

Until now, we have considered only a straight annular die. However, 
annular dies used in polymer processing operations have a flow channel of 
complex shape with either converging or diverging die walls. Different annular 
geometries make it possible to generate different flow histories not only of 
shearing, but also possibly superimposed biaxial extension (by changing the 
radius and the gap width along the annular channel). This additional defor- 
mation affects not only the polymer elements close to die wall, but also the 
one in the middle of the annulus. For material elements that are subjected to 
biaxial extension superimposed on shear, it would be necessary to use a 
different constitutive equation. However, as f a r  as is known, no real constitu- 
tive equation can be used to describe such a motion. An arbitrary superposi- 
tion of shear and biaxial extension in a constitutive equation of integral type 
was used by Winter and Fischer5 to study processing histories in extrusion 
dies, but its applicability is still open to question. Since a Newtonian fluid can 
be thought of as a limiting case, we would rather use it here. 

Two different kinds of die geometries were used as shown in Figure 4. 
Positive /3 means a diverging die, and negative /3 means a converging die. Dies 
no. 1, 2, and 3 all have the same radius and die gap both far upstream and at  
the die exit, as do no. 5, 6, and 7. Therefore, their f a r  upstream and die exit 
geometries are the same, and only the passway (converging and diverging 
section) lengths and angles are different. The length of converging and 
diverging sections were 1.637, 0.794, and 0.5 for lo", 20") and 30" dies, 
respectively. Dies no. 4 and 8 has the same fa r  upstream geometry, but their 
gap size a t  die exit was reduced using nonparallel walls. Die no. 4 used a 10' 
converging angle a t  the inner wall and a 30' converging angle a t  the outer 
wall. Die no. 8 used a 30" diverging angle a t  the inner wall and a 10' diverging 
angle a t  the outer wall. The length of the converging and diverging section 
was taken the same as 30" dies. As before, 8 x 13 meshes were used, and the 
boundary conditions were the same as for straight-die case [Fig. 2(a)]. The 
result of these geometries is shown in Table 111. In spite of the same extrusion 
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I’.uallcl convcrgmg die ( Die No 1.2.3 ) Nun puallcl wnvcrging dlc ( DIC No 4 ) 

Pmllcl diverging die (Die No. 5.6.7 ) Non paallel divcrging die (Die No 8 ) 

Fig. 4. The geometries of converging and diverging dies. 

rate and the Same upstream and die exit geometries, the swelling ratios show 
different behaviors. We can see that converging dies produce reduced outer 
radius swelling ratios and increased inner thickness swelling ratios compared 
tc those of a straight die. Converging dies no. 1, 2, and 3 have parallel walls, 
but die no. 4 has a narrowing gap in the direction of flow, so that there is a 
stretching along stream lines due to decreasing cross section. area and a 
concomitant compression in the hoop direction. According to Winter and 
Fischer’s computational analysisY5 a tapered section increases the stress ratio 
of first normal stress difference to shear strain significantly due to the 
occurrence of extensional flow in converging dies, whereas shear flow reduces 
the stress ratio to a smaller value for memory fluids. Even though Winter and 
Fischer’s result was not related to die swelling, it seems that a narrowed die 
would produce more swelling due to large free recovery after injection. For a 
Newtonian fluid, it can also be expected that the swelling ratios will increase 
in a die of narrowing gap due to stretching in the flow direction. This is indeed 

TABLE 111 
Effect of Die Geometry on the Swelling of an Annular Jet, k = 0.5 

- 30 
- 20 
- 10 
- 10-30 
30 
20 
10 
10-30 

1.11 
4.09 
6.93 
0.72 
36.93 
22.77 
14.25 
20.41 

32.97 
23.35 
12.96 
15.4 

- 58.85 
- 33.06 
- 16.15 
- 25.51 

15.51 
15.69 
15.22 
19.46 
2.36 
6.54 

11.24 
6.97 

Converging 
Converging 
Converging 
Converging 
Diverging 
Diverging 
Diverging 
Diverging 
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-3.0 -2.0 -1.0 0.0 
2 

Fig. 5. Axial stretching ratio of the fluid element near the middle of the converging annulus 
( R  initial = 0.75): (0) ratio for 30'; (+) ratio for 10"-30". 

the case as shown in Table 111. The stretching in a flow direction is given by 
the change of velocity along a streamline. 

This was calculated for two converging dies and is shown in Figure 5. It agrees 
with our expectation that a narrowed die has a larger stretching. 

For diverging dies, we have a circumferential or hoop stretching of the melt 
and a concomitant deceleration along the streamlines. This will decrease the 
thickness swelling ratio due to decreased shearing action. Table I11 reveals 
that the thickness swelling ratio is reduced with increasing diverging angle 
(no. 5, 6, and 7). For die no. 8 with nonparallel walls (lo" and 30" diverging 
angles for outer and inner walls, respectively), the stretching in the flow 
direction prevents hoop stretching, and we can expect that the thickness 
swelling ratio of die no. 8 would be smaller than for the 10" diverging die but 
larger than for the 30" diverging die. This is indeed the case, as in Table 111. 
Like axial stretching, the stretching in circumferential direction corresponds 
to a change of radial position of the streamline: 
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Fig. Hoop stretching ratio of the fluid element near the middle of diverging annt--.ls ( R  
initial = 0.736): (0) ratio for 30"; (+) ratio for 10"-30". 

This was calculated for two diverging dies (30" diverging die and 10"-30" 
diverging die). The result is shown in Figure 6. It can be seen clearly that the 
narrowed die has smaller stretching in radial direction than a die with parallel 
walls due to counteracting axial direction stretching. 

From Table I11 we can also see different annular jet movements. Cogswell 
and LamH1 derived the following approximate relationship for annular die 
swelling based on a number of simplifying assumptions: 

s, = s," (13) 

Henze and WuI2 found from their studies of parison swelling that 

s, = s,3 (14) 

However, no simple relationship between S, and So is apparent in Table 111. 
Orbey and Dealy concluded that the relative magnitudes of the thickness and 
diameter swellings can be independently controlled by appropriate die design 
features. The computational results also support this opinion. Another fact 
that attracts attention is that when k is close to 1, it is possible to use a 
Cartesian coordinate system instead of a cylindrical coordinate system, but, 
for converging or diverging die case, this would not be a good approximation 
since in a Cartesian coordinate system, because of no hoop stress, the fluid 
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does not have a converged shape but keeps moving in the flowing direction for 
the converging or the diverging die case. When the same calculation was done 
for the annular jet coming out of a 30" diverging die of k = 0.96, the 
Cartesian coordinate system calculation shows 24.58% thickness swelling ratio 
at f a r  downstream (its inner and outer surfaces did not have converged 
shapes), while the cylindrical coordinate system calculation shows 18.38% 
thickness swelling at f a r  downstream. As expected, use of a cylindrical coordi- 
nate system gives less thickness swelling ratio due to hoop stress. That is 
because in a Cartesian coordinate system the hoop stress is zero, but in a 
cylindrical coordinate system this value is not zero. 

CONCLUSION 

The result of this work shows that not only shearing but also elongational 
effect plays an important role in annular die swelling phenomena. Also, die 
gap variation affects annular die swelling ratios due to different shearing 
action. From the computational result, a simple relationship between the 
ratios of thickness swelling and outer radius swelling could not be found. Even 
though this study was limited to a Newtonian fluid case, it reveals that die 
geometry affects strongly the final extrudate dimensions. For a viscoelastic 
fluid case, the problem will be more complicated. This direction in research is 
under investigation and will be reported on in the future. 
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